07 知识点梳理:算法数据结构

01 时间复杂度与空间复杂度

我们衡量算法的优劣主要通过两个维度时间``空间,而这两个维度对应的就是时间复杂度``空间复杂度. 但鱼和熊掌不可兼得,我们只能在这两者间取得一个合适的平衡点

1.时间复杂度

算法所需要的时间工作量

  • 标记公式

    • T(n) = O(n)

常见的时间复杂度量级

a.常数阶O(1)

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

b.线性阶O(n)

for(i=1; i<=n; ++i)
{
   j = i;
   j++;
}

c.对数阶O(logN)

以2为底

int i = 1;
while(i<n)
{
    i = i * 2;
}

d.线性对数阶(nlogN)

for(m=1; m<n; m++)
{
    i = 1;
    while(i<n)
    {
        i = i * 2;
    }
}

e.平方阶(n²)

for(x=1; i<=n; x++)
{
   for(i=1; i<=n; i++)
    {
       j = i;
       j++;
    }
}

如果把一层循环的n改成m,时间复杂度就成了 O(m*n)

for(x=1; i<=m; x++)
{
   for(i=1; i<=n; i++)
    {
       j = i;
       j++;
    }
}

f.立方阶O(n³)、K次方阶O(n^k)

参考的O(n²),O(n³)相当于三层n循环

2.空间复杂度

算法在运算中临时占用的控件的大小

  • 标记公式

    • S(n) = O(n)

常见的空间复杂度量级

a. O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)

int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

b. O(n)

int[] m = new int[n]
for(i=1; i<=n; ++i)
{
   j = i;
   j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)

02 排序题

这里简单的说下几种快速排序的不同之处,随机快排,是为了解决在近似有序的情况下,时间复杂度会退化为O(n^2),双路快排是为了解决快速排序在大量数据重复的情况下,时间复杂度会退化为O(n^2),三路快排是在大量数据重复的情况下,对双路快排的一种优化。

冒泡排序

extension Array where Element : Comparable{
    public mutating func bubbleSort() {
        let count = self.count
        for i in 0..<count {
            for j in 0..<(count - 1 - i) {
                if self[j] > self[j + 1] {
                    (self[j], self[j + 1]) = (self[j + 1], self[j])
                }
            }
        }
    }
}

选择排序

extension Array where Element : Comparable{
    public mutating func selectionSort() {
        let count = self.count
        for i in 0..<count {
            var minIndex = i
            for j in (i+1)..<count {
                if self[j] < self[minIndex] {
                    minIndex = j
                }
            }
            (self[i], self[minIndex]) = (self[minIndex], self[i])
        }
    }
}

插入排序

extension Array where Element : Comparable{
    public mutating func insertionSort() {
        let count = self.count
        guard count > 1 else { return }
        for i in 1..<count {
            var preIndex = i - 1
            let currentValue = self[i]
            while preIndex >= 0 && currentValue < self[preIndex] {
                self[preIndex + 1] = self[preIndex]
                preIndex -= 1
            }
            self[preIndex + 1] = currentValue
        }
    }
}

快速排序

extension Array where Element : Comparable{
    public mutating func quickSort() {
        func quickSort(left:Int, right:Int) {
            guard left < right else { return }
            var i = left + 1,j = left
            let key = self[left]
            while i <= right {
                if self[i] < key {
                    j += 1
                    (self[i], self[j]) = (self[j], self[i])
                }
                i += 1
            }
            (self[left], self[j]) = (self[j], self[left])
            quickSort(left: j + 1, right: right)
            quickSort(left: left, right: j - 1)
        }
        quickSort(left: 0, right: self.count - 1)
    }
}

随机快排

extension Array where Element : Comparable{
    public mutating func quickSort1() {
        func quickSort(left:Int, right:Int) {
            guard left < right else { return }
            let randomIndex = Int.random(in: left...right)
            (self[left], self[randomIndex]) = (self[randomIndex], self[left])
            var i = left + 1,j = left
            let key = self[left]
            while i <= right {
                if self[i] < key {
                    j += 1
                    (self[i], self[j]) = (self[j], self[i])
                }
                i += 1
            }
            (self[left], self[j]) = (self[j], self[left])
            quickSort(left: j + 1, right: right)
            quickSort(left: left, right: j - 1)
        }
        quickSort(left: 0, right: self.count - 1)
    }
}

双路快排

extension Array where Element : Comparable{
    public mutating func quickSort2() {
        func quickSort(left:Int, right:Int) {
            guard left < right else { return }
            let randomIndex = Int.random(in: left...right)
            (self[left], self[randomIndex]) = (self[randomIndex], self[left])
            var l = left + 1, r = right
            let key = self[left]
            while true {
                while l <= r && self[l] < key {
                    l += 1
                }
                while l < r && key < self[r]{
                    r -= 1
                }
                if l > r { break }
                (self[l], self[r]) = (self[r], self[l])
                l += 1
                r -= 1
            }
            (self[r], self[left]) = (self[left], self[r])
            quickSort(left: r + 1, right: right)
            quickSort(left: left, right: r - 1)
        }
        quickSort(left: 0, right: self.count - 1)
    }
}

三路快排

// 三路快排
extension Array where Element : Comparable{
    public mutating func quickSort3() {
        func quickSort(left:Int, right:Int) {
            guard left < right else { return }
            let randomIndex = Int.random(in: left...right)
            (self[left], self[randomIndex]) = (self[randomIndex], self[left])
            var lt = left, gt = right
            var i = left + 1
            let key = self[left]
            while i <= gt {
                if self[i] == key {
                    i += 1
                }else if self[i] < key{
                    (self[i], self[lt + 1]) = (self[lt + 1], self[i])
                    lt += 1
                    i += 1
                }else {
                    (self[i], self[gt]) = (self[gt], self[i])
                    gt -= 1
                }

            }
            (self[left], self[lt]) = (self[lt], self[left])
            quickSort(left: gt + 1, right: right)
            quickSort(left: left, right: lt - 1)
        }
        quickSort(left: 0, right: self.count - 1)
    }
}

Last updated

Was this helpful?